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Teleportation of Any Form of Two-Mode
Quantum States

Tong-Qiang Song1

By using two two-mode Einstein–Podolsky–Rosen (EPR) pair eigenstates or two two-
mode squeezed states as quantum channels we study the quantum teleportation of any
form of two-mode quantum states, which conclude discrete and continuous variable
quantum states.
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1. INTRODUCTION

Recently, the conception of entanglement becomes more and more fasci-
nating and important as it play a central role for quantum communication, quan-
tum teleportation, and quantum state engineering (Ekert and Josza, 1996;
Divinvenzo, 1995; Bennett and Wisner, 1992; Bennett et al., 1993; Vaidman, 1994;
Furasawa et al., 1998; Braunstein and Kimble, 1998). Two-particle, three-particle,
and four-particle entanglement have been successfully demonstrated experimen-
tally in trapped ions, Rydberg atoms, and cavity quantum electrodynamics (QED)
(Turchette et al., 1998; Hagley et al., 1997; Rauschenbeutel et al., 2000; Sackett
et al., 2000). In an entangled quantum state, measurements performed on one part
of the system provide information on the remaining part, as first pointed out by
Einstein, Podolsky, and Rosen (EPR) in their famous paper arguing the incom-
pleteness of quantum mechanics (Einstein, Podolsky, and Rosen, 1935).

In Bennett and Wisner (1992), Bennett et al. (1993), and Vaidman (1994),
Bennett et al. and Vaidman have both suggested that by virtue of entanglement it is
possible to transfer the quantum state of a particle onto another particle provided
that one does not obtain any information about the state in the course of this trans-
formation. The experimental quantum teleportation was successfully performed
by Zeilinger’s groups (Bouwmeester, 1997) for a discrete variable system and
Kimble’s group for a continuous variable system. (Braunstein and Kimble, 1998;
D’Ariano, Lo Presti, and Sacchi, 2000). The teleportation theory is further
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developed by D’ Ariano, Presti, and Sacchi (2000) and Braunstein et al. (2000). Re-
cently, by using the two-mode EPR pair eigenstates as quantum channels, Fan et al.
studied the quantum teleportation of two-mode squeezed vacuum state (Hong-Yi
and Yue, 2002). In this letter, we study the quantum teleportation of any form of
two-mode quantum states (which conclude discrete and continuous variable quan-
tum states) by using the two-mode EPR pair eigenstates or the two-mode squeezed
vacuum as quantum channels.

2. EPR PAIR EIGENSTATES

The original conception of entanglement for bipartite is about wavefunction
with continuous variables, as first pointed out by EPR in their famous paper ar-
guing the incompleteness of quantum mechanics. (Einstein, Podolsky, and Rosen,
1935). EPR introduced the common eigenfunction of the relative position of two
particles X̂1 − X̂2 (with their distance x0) and their total momentum P̂1 + P̂2 as
follow:

�(x1, x2) =
∫ ∞

−∞
exp [i p(x1 − x2 + x0)] dp (1)

which describes a sharply correlated two-particle system. In Fan and Klauder
(1994), Fan and Chen (1996), and Fan and Ye (1995), the common eigenstate |η〉12

of commutative operators (X̂1 − X̂2, P̂1 + P̂2) in two-mode Fock space (which
we call the EPR pair eigenstate) is constructed

|η12〉 = exp

[
−1

2
|η|2 + ηa+

1 − η∗a+
2 + a+

1 a+
2

]
|00〉12 (2)

where η = (η1 + iη2)/
√

2 is a complex number, |00〉 is the two-mode vacuum
state, (ai , a+

i ), i = 1, 2, are the two-mode Bose annihilation and creation operators
in Fock space, related to X̂ i and P̂ i by

Xi = 1√
2

(ai + a+
i ), Pi = 1√

2i
(ai − a+

i ) (3)

It is easily proved that the state |η〉12 obeys the eigenvector equations

(X̂1 − X̂2)|η〉12 = η1|η〉12

(P̂1 − P̂2)|η〉12 = η2|η〉12 (4)

The state |η〉12 is an entangled state, which can be seen from its Schmidt
decomposition

|η〉12 = exp

(
− i

2
η1η2

) ∫ ∞

−∞
dx |x〉1 ⊗ |x − η1〉2 exp(iη2x) (5)
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|η〉12 = exp

(
− i

2
η1η2

) ∫ ∞

−∞
dp|p + η2〉1 ⊗ |−p〉2 exp (−i pη1) (6)

where |x〉i is the coordinate eigenstate of X̂ i

|x〉i = π−1/4 exp

[
−1

2
x2 +

√
2xa+

i − 1

2
ai

+2
]
|0〉i (7)

|P〉i is the momentum eigenvector of P̂ i

|p〉i = π−1/4 exp

[
−1

2
p2 + i

√
2pa+

i + 1

2
ai

+2
]
|0〉i (8)

Using the normal ordering form of the vacuum projection operator

|0〉〈0| =: e−a+a (9)

where :: denotes the normal ordering, and the technique of integration within an
ordered product (IWOP) of operator (Fan and Klauder, 1994; Fan and Chen, 1996;
Fan and Ye, 1995) we can prove that |η〉12 satisfies the completeness relation

∫
d2η

π
|η〉12 12〈η| = 1 (10)

and the orthonormal property

12〈η′|η〉12 = πδ(η − η′)δ(η∗ − η′∗) (11)

Therefore, |η〉12 makes up a new quantum mechanical representation. From
Eq. (5) we operate the operator exp(i P̂1 X̂2) on the state |η〉12

exp (i P̂1 X̂2)|η〉12

= exp

(
− i

2
η1η2

) ∫ ∞

−∞
dx exp [i P̂1(x − η1)]|x〉1 ⊗ |x − η1〉2 exp (iη2x)

= exp

(
− i

2
η1η2

)
|x = η1〉1

∫ ∞

−∞
dy|y〉2 exp (iη2 y)

=
√

2π exp

(
i

2
η1η2

)
|x = η1〉1 ⊗ |p = η2〉2 (12)

It then follows

exp (−i P̂1 X̂2)
√

2π exp

(
i

2
η1η2

)
|x = η1〉1 ⊗ |p = η2〉2 = |η〉12 (13)

We name exp(−i P̂1 X̂2) the entangling operator since it entangles |x = η1〉1

(a coordinate eigenstate) and |p = η2〉2 (a momentum eigenstate) to the EPR pair
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eigenstate |η〉12. Similarly, by operating the operator exp(i P̂2 X̂1) on the state |η〉12

we obtain

exp (i P̂2 X̂1)|η〉12 =
√

2π exp

(
− i

2
η1η2

)
|p = η2〉1 ⊗ |p = η1〉12 (14)

exp (−i P̂2 X̂1)
√

2π exp

(
− i

2
η1η2

)
|p = η2〉1 ⊗ |x = −η1〉2 = |η〉12 (15)

Therefore, exp (−i P̂2 X̂1) is another entangling operator.

3. TELEPORTATION OF ANY FORM OF TWO-MODE
QUANTUM STATES

To teleport a two-mode quantum state, two quantum channels are necessary.
Let particles 3 and 1 be prepared in an EPR pair eigenstate |n〉13, and particles 4
and 2 be prepared in |n′〉24. Allice and Bob share the two EPR pair eigenstates |n〉13

and |n′〉24 (two quantum channels). Initially the unknown two-mode quantum state
|�〉56, which will be teleported from Allice to Bob, is in modes 5 and 6. Thus, the
total initial state of the system is

|�〉56 ⊗ |η〉13 ⊗ |η′〉24 (16)

The teleportation scheme is as follows: A joint Bell measurement (quadrature
phase measurement) of X̂5 − X̂3 and P̂5 + P̂3 performed on particles 5 and 3, and
X̂6 − X̂4 and P̂6 + P̂4 on particles 6 and 4, respectively, projects the total initial
state of the system onto the EPR entangled state |η′′〉53 ⊗ |η′′′〉64. The EPR pair
eigenstate |η′′〉53 ⊗ |η′′′〉64 can be viewed as continous Bell basis, because they are
orthogonal and complete. After the measurement, the projected state for particles
1 and 2 (the receiver Bob has particles 1 and 2) is

64〈η′′′| ⊗53 〈η′′|�〉56 ⊗ |η〉13 ⊗ |η′〉24 (17)

Substituting Eqs. (13) and (15) into Eq. (17), we have

64〈η′′′| ⊗53 〈η′′|�〉56 ⊗ |η〉13 ⊗ |η′〉24

= (2π )2 exp

[
i

2
(η1η2 + η′

1η
′
2 + η′′

1η
′′
2 + η′′′

1 η′′′
2 )

]

6〈p = η′′′
2 | ⊗4 〈x = −η′′′

1 | ⊗5 〈p = η′′
2 | ⊗3 〈x = −η′′

1 |
exp (i P̂4 X̂6) exp (−i P̂2 X̂4) exp (i P̂3 X̂5) exp (−i P̂1 X̂3)

|x = η1〉1 ⊗ |p = η2〉3 ⊗ |x = η′
1〉2 ⊗ |p = η′

2〉4 ⊗ |�〉56 (18)

By means of the operator formula

exp ( Â + B̂) = exp ( Â) exp (B̂) exp (−Ĉ/2) = exp (B̂) exp ( Â) exp (Ĉ/2) (19)
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where [ Â, B̂] = Ĉ , [Ĉ , Â] = [Ĉ , B̂] = 0, we have

exp (i P̂4 X̂6) exp (−i P̂2 X̂4) = exp (−i P̂2 X̂4) exp (−i P̂2 X̂6) exp (i P̂4 X̂6) (20)

exp (i P̂3 X̂5) exp (−i P̂1 X̂3) = exp (−i P̂1 X̂3) exp (−i P̂1 X̂5) exp (i P̂3 X̂5) (21)

Substituting Eqs. (20) and (21) into Eq. (18), we have

64〈η′′′| ⊗53 〈η′′|�〉56 ⊗ |η〉13 ⊗ η′〉24

= D6〈p = η′′′
2 | ⊗4 〈x = −η′′′

1 | ⊗5 〈p = η′′
2 | ⊗3 〈x = −η′′

1 |
exp (iη′′′

1 P̂2) exp (−i P̂2 X̂6) exp (iη′′
2 X̂6) exp (iη′′′

1 P̂1)

exp (−i P̂1 X̂5) exp (iη′′′
2 X̂5)|x = η1〉1 ⊗ |P = η2〉3 ⊗ |x = η′

1〉2

⊗|P = η′
2〉4 ⊗ |�〉56 = 2π E6〈P = η′′′

2 | ⊗5 〈p = η′′
2 | exp (iη′′′

1 P̂2)

exp (−i P̂2 X̂6) exp (iη′
2 X̂6) exp (iη′′

1 P̂1) exp (−i P̂1 X̂5) exp (iη2 X̂5)|x = η1〉1

⊗|x = η′
1〉2 ⊗ |�〉56 (22)

where we have used 〈x |p〉 = 1√
2π

exp (i xp), and

D = (2π )2 exp

[
i

2
(η1η2 + η′

1η
′
2 + η′′

1η
′′
2 + η′′′

1 η′′′
2 )

]
(23)

E = exp

[
i

2
(η1η2 + η′

1η
′
2 + η′′

1η
′′
2 + η′′′

1 η′′′
2 − 2η′′

1η2 − 2η′′′
1 η′

2)

]
(24)

Suppose that the teleported state |�〉56 is in any form of two-mode quantum
state

|�〉56 =
∑
k,l

Ckl |k〉5 ⊗ |l〉6 (25)

By means of the completeness relation of coordinate eigenstates∫ ∞

−∞
|q〉〈q|dq = 1 (26)

state |�〉56 can be written as

|�〉56 =
∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′|q〉5 ⊗ |q ′〉6 Hk(q)Hl(q

′)

exp

[
−1

2
(q2 + q ′2)

]
(27)

Substituting Eq. (27) into Eq. (22), we obtain

64〈η′′′| ⊗53 〈η′′|�〉56 ⊗ |η〉13 ⊗ |η′〉24
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= 2π E6〈p = η′′′
2 | ⊗5 〈p = η′′

2 | exp (iη′′′
1 P̂2) exp (−P̂ X̂6)

exp (iη′
2 X̂6) exp (iη′′

1 P̂1) exp (−i P̂1 X̂5) exp (iη′′
2 X̂5)|x = η1〉1 ⊗ |x

= η′
1〉2 ⊗

∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′|q〉5 ⊗ |q ′〉6 Hk(q)Hl(Q′)

exp

[
−1

2
(q2 + q ′2)

]
= E

∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′ Hk(q)Hl(q

′)

exp

[
−1

2
(q2 + q ′2)

]
exp [i(η′

2 − η′′′
2 )q ′ + i(η2 − η′′

2)q]|x = η1 − η′′
1 + q〉1

⊗|x = η′
1 − η′′′

1 + q ′〉2 = EU
∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′ Hk(q)Hl(q

′)

exp

[
−1

2
(q2 + q ′2)

]
|q〉1 ⊗ |q ′〉2 (28)

where we have used

exp (−i P̂ y)|x 〉= | x + y〉 (29)

U = exp �−i P̂1(η1 − η′′
1) − i P̂2(η1 − η′′′

1 )�
exp �i(η2 − η′′

2)X̂1 + i(η′
2 − η′′′

2 )X̂2� (30)

Comparing Eqs. (27) and (28) we can see that up to a simple unitary transformation
U and a phase factor E , the outcome states in modes 1 and 2 are the same as the
incoming unknown two-mode quantum states in modes 5 and 6. If Alice sends the
results of the measurement (X̂5 − X̂3, P̂5 + P̂3) and (X̂6 − X̂4, P̂6 + P̂4) to the
receiver Bob (classical information delivery), after making a unitary transformation
to erase the phase factor and a unitary transformation U−1, he can obtain the
unknown two-mode quantum state. Thus the teleportation of any form of two-
mode quantum states given by Eq. (25) is carried out.

In the above discussion, we use two-mode EPR pair eigenstates as quan-
tum channels to study the quantum teleportation of any form of n-mode quan-
tum states. For a more practical quantum channel, two-mode squeezed vacuum
state, which can be realized experimentally, is a good candidate. We now pro-
ceed to study the quantum teleportation of any form of n-mode quantum states
through n two-mode squeezed vacuum state channels. Suppose that the quantum
channels which Alice and Bob share are n two-mode squeezed vacuum states
|τi 〉n+i,2n+i = Sn+i,2n+i (τi )|00〉n+i,2n+i , (i = 1, 2, . . . , n), where Si, j is two-mode
squeezed operator for modes i and j , and Alice initially possesses an unknown
quantum state |�〉1,2,...,n , which will be teleported from Alice to Bob. Thus the
total initial state of the system is |�〉1,2,...,n ⊗ |τ1〉n+1,2n+1 ⊗ |τ2〉n+2,2n+2 ⊗ · · · ⊗
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|τn〉2n,3n . To teleport the target state |�〉1,2,...,n , Alice makes a joint measurement on
modes (n + i, 2n + i), (i = 1, 2, . . . , n), which leads to another n squeezed vac-
cum states, say |τi 〉n+i,2n+i = Sn+i,2n+i (τi )|00〉n+i,2n+i , (i = 1, 2, . . . , n), |τ ′〉35 =
S35(τ ′)|00〉35, and |σ 〉46 = S46(σ ′)|00〉46. By means of the expression of
squeezed operator in the two-mode EPR entangled state representation (Hong-
Yi, 1997)

Si j (µ) = exp [λ(a+
i a+

j − ai a j )] = 1

µπ

∫
d2η|η/µ〉i j i j 〈η|, µ = eλ (31)

and Eq. (5), we can obtain the projected state for modes 1 and 2

35〈τ ′| ⊗46 〈 σ ′|τ 〉13 ⊗ |σ 〉24 ⊗ |ψ〉56

= 35〈00| ⊗46 〈00|S+
35(τ ′) S+

46(σ ′) S13(τ )S24(σ )|00〉13 ⊗ |00〉24 ⊗ |ψ〉3

= 1

ττ ′σσ ′π4

∫
d2η d2η′ d2η′′ d2η′′′ exp

[
−1

2
(|η|2 + |η′|2 + |η′′|2 + |η′′′|2)

]

35〈η′/τ ′| ⊗46 〈η′′/σ ′|η′′′/τ 〉13 ⊗ |η/σ 〉24 ⊗ |ψ〉56

= 1

ττ ′σσ ′π4

∫
d2η d2η′ d2η′′ d2η′′′ exp

[
−1

2
(|η|2 + |η′|2 + |η′′|2 + |η′′′|2)

]

exp

[
i

2

(
η′

1η
′
2

τ ′2 + η′′
1η

′′
2

σ ′2 + η′′′
1 η′′′

2

τ 2
+ η1η2

σ 2

)]

∫ ∞

−∞
dx1 dx25〈x1 − η′

1/τ
′| ⊗6 〈x2 − η′′

1/σ
′|ψ〉56 ⊗ ∣∣x1 + η′′′

1 /τ 〉1 ⊗ |

x2 + η1/σ 〉2 exp

[
−i

(
η′

2

τ ′ − η′′′
2

τ

)
x1 − i

(
η′′

2

σ ′ − η2

σ

)
x2

]
(32)

Substituting Eq. (27) into Eq. (32), we have

35〈τ ′| ⊗46 〈 σ ′|τ 〉13 ⊗ |σ 〉24 ⊗ |ψ〉56

= 1

ττ ′σσ ′π4

∫
d2η d2η′ d2η′′ d2η′′′ exp

[
−1

2
(|η|2 + |η′|2 + |η′′|2 + |η′′′|2)

]

exp

[
i

2

(
−η′

1η
′
2

τ ′2 − η′′
1η

′′
2

σ ′2 + η′′′
1 η′′′

2

τ 2
+ η1η2

σ 2
+ 2η′

1η
′′′
2

ττ ′ + 2η′
1η

′′′
2

σσ ′

)]

∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′ Hk(q)Hl(q

′) exp

[
− 1

2
(q2 + q ′2)

]

|q + η′
1/τ

′ + η′′′
1 /τ 〉1 ⊗ |q ′ + η′′

1/σ
′ + η1/σ 〉2

exp

[
−i

(
η′

2

τ ′ − η′′′
2

τ

)
q − i

(
η′′

2

σ ′ − η2

σ

)
q ′

]
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= F̂(X̂1, X̂2, P̂1, P̂2)
∑
k,l

Ckl
1√

2k+l k!l!π

∫ ∞

−∞
dq dq ′ Hk(q)Hl(q

′)

|q〉1 ⊗ |q ′〉2 exp

[
− 1

2
(q2 + q ′2)

]
(33)

Where

F̂(X̂1, X̂2, P̂1, P̂2)

= 1

ττ ′σσ ′π4

∫
d2η d2η′ d2η′′ d2η′′′ exp

[
−1

2
(|η|2 + |η′|2 + |η′′|2 + |η′′′|2)

]

exp

[
i

2

(
−η′

1η
′
2

τ ′2 − η′′
1η

′′
2

σ ′2 + η′′′
1 η′′′

2

τ 2
+ η1η2

σ 2
+ 2η′

1η
′′′
2

ττ ′ + 2η′′
1η2

σσ ′

)]

exp

[
−i

(
η′

1

τ ′ + η′′′
2

τ

)
P̂1 − i

(
η′′

1

σ ′ + η1

σ

)
P̂2

]

exp

[
−i

(
η′

2

τ ′ − η′′′
2

τ

)
X̂1 − i

(
η′′

2

σ ′ − η2

σ

)
X̂2

]
(34)

Alice tells her measurement result to Bob through a classical channel, Bob then
perform a transformation of [F̂−1(X̂1, X̂2, P̂1, P̂2) to obtain the state |ψ〉12 imi-
tating the state |ψ〉56. Thus the teleportation of any form of two-mode quantum
states through a two-mode squeezed state channel is carried out.

4. SUMMARY

In summary, by means of the entagling operators for the two-mode EPR pair
eigenstate, we study the quantum teleportation of any form of two-mode quantum
states (which conclude discrete and continuous variable quantum states) through
two EPR pair eigenstate channels. With the help of the expression of two-mode
squeezed vacuum state in the two-mode EPR pair eigenstate representation, we
derive the results of teleporting any form of two-mode quantum states through
two two-mode squeezed vacuum state channels. Our calculation has been greatly
simplified by virtue of the EPR pair eigenstates |η〉. So far as we know, in the
literature about quantum teleportation the advantages of using two-mode EPR
pair eigenstate have not been paid enough attention.
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